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Second Semester - Analysis IV

Date : April 28, 2015

1. If X is a compact metric space, prove that C(X) is a separable metric
space.

Solutions: Since X is compact we can find countable {Bδ(zj)} is dense in X.
Define fj(x) = d(x, zj). Let M⊂ C(X) consist of functions which are finite

product of fj. Let A consist of function of the form f =
∑N

k=1 akhk, ak ∈
Q, hk ∈M. Now A is an algebra and its separate point and has non vanish-
ing property. Stone-Weierstrass Theorem will give A is dense in C(X). And
it is not difficult to see that A is countable.

2. If X is a compact metric space and A is a closed subalgebra of CR(X)
that separates points of X, prove that A = CR(X) or there is a x0 ∈ X such
that A = {f ∈ CR(X)) : f(x0) = 0}.

Solutions: If A has unit then A = CR(X) as A is closed. Suppose A does
not have unit. Let for f ∈ A there is xf ∈ X such that f(xf ) 6= 0 and xf 6= xg
for f 6= g. Then using compactness of X there exist f1, f2, · · · , fn such that
X ⊂

⋃n
i=1Bδ(xfi) the using continuity of fi we get g =

∑n
i=1 |fi(x)|2 ∈ A is

non vanishing. So A has unit as 1
g

is in A so we get contradiction therefore
we are done.

3. Let f : R2 → R be f(x, y) = (x2 − y2, 2xy). Prove that f is locally
one-one but not one-one on R2 \ (0, 0) and discuss inverse function theorem
at (1, 1).

Solutions: We have

f ′(x,y) =

(
2x −2y
2y 2x

)
Therefor |f ′(x, y)| = 4(x2 + y2) 6= 0 when (x, y) 6= (0, 0). There f is 1-1 in
any nbd of a point in R2 \ (0, 0). But f(−2, 2) = (0,−8) = f(2,−2) so f is
not globally 1-1.
Now |f ′(1, 1)| = 8 so there exist a nbd U of (1, 1) and nbd V of (0, 2) = f(1, 1)
such that f(U) = V there exist g : V → u such that g(f(x)) = x for all
x ∈ U .
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4. Let f ∈ R[−π, π] be a 2π-periodic function and sn(x) be the n-th partial
sum of the Fourier series at x ∈ R. Prove that for x ∈ R,

1

n

n−1∑
i=0

si(x) =
1

2nπ

∫ π

−π

f(x+ t) + f(x− t)
2

sin2 nt

sin2 t
dt. (0.1)

Solutions: From Rudin page 189 equation (78) we have

si(x) =
1

2π

∫ π

−π
f(x− t)Di(t)dt, (0.2)

where Di(t) =
sin(i+ 1

2
)t

sin t
2

. Changing −t to t in above integral together with the

fact Di(t) = Di(−t) we get

si(x) =
1

2π

∫ π

−π
f(x+ t)Di(t)dt. (0.3)

Now (0.2) and (0.3) will give

si(x) =
1

2nπ

∫ π

−π

f(x+ t) + f(x− t)
2

Di(t)dt. (0.4)

Now

n−1∑
i=0

Di(x) =
1

2 sin2 t
2

n−1∑
i=0

2 sin(i+
1

2
)t sin

t

2
=

1− cosnt

2 sin2 t
2

=
sin2 nt

sin2 t
,

In above we use 2 sin a sin b = cos(a− b)− cos(a+ b) and 1− cos a = 2 sin2 a
2
.

So above together with (0.4) will give the result.

5. Let f(x) = 1 if |x| ≤ 1 and f(x) = 0 if 0 < |x| ≤ π and f(x+2π) = f(x) for
all x ∈ R. ind the Fourier coefficients of f and deduce that

∑∞
1

sinn
n

= π−1
2

.

Solutions: a0 = 1
π

∫ π
−π f(x)dx = 2

π
, an =

∫ π
−π f(x) cosnxdx = 2

π
sinn
n

, bn =∫ π
−π f(x) sinnxdx = 0. Now we have

f(x) =
a0
2

+
∑
n

an cosnx+
∑
n

bn sinnx
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At x = 0 we have the result

1 =
1

π
+

2

π

∑ sinn

n
⇒ π − 1

2
=
∑
n

sinn

n
.

6. Show that the set of all polynomials of degree at most 3 with coeffi-
cients from [1, 1] is compact in C[0, 1]. Does the result hold if coefficients are
not assumed to be from [1, 1].

Solution: Let S = {f : f(x) = a0 +a1x+a2x
2 +a3x

3, |x| ≤ 1 and |ai| ≤ 1}.
Then ‖f‖∞ ≤ 4 and |f ′(x)| ≤ 6 for all f ∈ S. So we have |f(x) − f(y)| ≤
6|x− y| for all f ∈ S. Now by arzella-ascolli we have the result.

7. Prove that Ω = {A ∈ L(Rn) : detA 6= 0} is open and A → A−1 is
continuous on Ω.

Solution: We realize A ∈ L(Rn) as an element of Rn2
then det A is a

polynomial therefore continuous. If We can realize A−1 = adjugate of A
detA

, then
we have the result.

8. Let f ∈ R[−π, π] be a 2π periodic function sn be the nth partial sum
of the fourier series.
(a) If s(x) limt→0

f(x+t)+f(x−t)
2

exist show that 1
n

∑n−1
i=0 si(x)→ s(x).

Solutions: Kn = 1
n

∑n−1
i=0 Di(x) = 1

n

sin2 nt
2

sin2 t
2

we can see that Kn ≥ 0,
1
2π

∫ π
−πKn(x)dx = 1. Kn(x) ≤ 2

n sin2 δ
2

, 0 < δ < |x| ≤ π. We have

1

n

n−1∑
i=0

si(x) =
1

2π

∫ π

−π
f(x− t)Kn(t)dt (see 0.1)

Now proceed as in Theorem 7.26 of rudin.

(b) If f is differentiable such that f ′ ∈ R[−π, π] and 1
2π

∫ π
−π |f

′(x)|2dx ≤ 1

then |f(x)− sn(x)| ≤ 2√
n

for all x and n ≥ 1.
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solutions: We have

f(x)− sn(x) =
∞∑

k=n+1

[
an cosnx+ bn sinnx

]
using Integration by parts we have

an =
b′n
n

and bn =
a′n
n

In above a′n = 1
π

∫ π
−π f

′(x) cosnxdx and b′n = 1
π

∫ π
−π f

′(x) sinnxdx. Therefore
we have

|f(x)− sn(x)| ≤
∞∑

k=n+1

1

k
[|a′k|+ |b′k|]

≤ 2
( ∞∑
k=n+1

1

k2
) 1

2
( ∞∑
k=n+1

|a′k|2 + |b′k|2
) 1

2

Now we have
∑∞

k=n+1
1
k2
≤
∫∞
n

1
x2

= 1
n

and
∑

k |a′k|2+|b′k|2 = 1
2π

∫ π
−π |f

′(x)|2dx
Then from above we have the result.
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