B. Math. Third Year Second Semester - Analysis IV Date : April 28, 2015

1. If X is a compact metric space, prove that C(X) is a separable metric space.

Solutions: Since X is compact we can find countable $\{B_{\delta}(z_j)\}$ is dense in X. Define $f_j(x) = d(x, z_j)$. Let $\mathcal{M} \subset C(X)$ consist of functions which are finite product of f_j . Let \mathcal{A} consist of function of the form $f = \sum_{k=1}^{N} a_k h_k$, $a_k \in \mathbb{Q}$, $h_k \in \mathcal{M}$. Now \mathcal{A} is an algebra and its separate point and has non vanishing property. Stone-Weierstrass Theorem will give \mathcal{A} is dense in C(X). And it is not difficult to see that \mathcal{A} is countable.

2. If X is a compact metric space and \mathcal{A} is a closed subalgebra of $C_{\mathbb{R}}(X)$ that separates points of X, prove that $\mathcal{A} = C_{\mathbb{R}}(X)$ or there is a $x_0 \in X$ such that $\mathcal{A} = \{f \in C_{\mathbb{R}}(X)\} : f(x_0) = 0\}.$

Solutions: If \mathcal{A} has unit then $\mathcal{A} = C_{\mathbb{R}}(X)$ as \mathcal{A} is closed. Suppose \mathcal{A} does not have unit. Let for $f \in \mathcal{A}$ there is $x_f \in X$ such that $f(x_f) \neq 0$ and $x_f \neq x_g$ for $f \neq g$. Then using compactness of X there exist f_1, f_2, \dots, f_n such that $X \subset \bigcup_{i=1}^n B_{\delta}(x_{f_i})$ the using continuity of f_i we get $g = \sum_{i=1}^n |f_i(x)|^2 \in \mathcal{A}$ is non vanishing. So \mathcal{A} has unit as $\frac{1}{g}$ is in \mathcal{A} so we get contradiction therefore we are done. \Box

3. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be $f(x, y) = (x^2 - y^2, 2xy)$. Prove that f is locally one-one but not one-one on $\mathbb{R}^2 \setminus (0, 0)$ and discuss inverse function theorem at (1, 1).

Solutions: We have

$$\mathbf{f}'(\mathbf{x}, \mathbf{y}) = \left(\begin{array}{cc} 2x & -2y\\ 2y & 2x \end{array}\right)$$

Therefor $|f'(x,y)| = 4(x^2 + y^2) \neq 0$ when $(x,y) \neq (0,0)$. There f is 1-1 in any nbd of a point in $\mathbb{R}^2 \setminus (0,0)$. But f(-2,2) = (0,-8) = f(2,-2) so f is not globally 1-1.

Now |f'(1,1)| = 8 so there exist a nbd U of (1,1) and nbd V of (0,2) = f(1,1)such that f(U) = V there exist $g: V \to u$ such that g(f(x)) = x for all $x \in U$. 4. Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π -periodic function and $s_n(x)$ be the n-th partial sum of the Fourier series at $x \in \mathbb{R}$. Prove that for $x \in \mathbb{R}$,

$$\frac{1}{n}\sum_{i=0}^{n-1}s_i(x) = \frac{1}{2n\pi}\int_{-\pi}^{\pi}\frac{f(x+t) + f(x-t)}{2}\frac{\sin^2 nt}{\sin^2 t}dt.$$
 (0.1)

Solutions: From Rudin page 189 equation (78) we have

$$s_i(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) D_i(t) dt, \qquad (0.2)$$

where $D_i(t) = \frac{\sin(i+\frac{1}{2})t}{\sin\frac{t}{2}}$. Changing -t to t in above integral together with the fact $D_i(t) = D_i(-t)$ we get

$$s_i(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x+t) D_i(t) dt.$$
 (0.3)

Now (0.2) and (0.3) will give

$$s_i(x) = \frac{1}{2n\pi} \int_{-\pi}^{\pi} \frac{f(x+t) + f(x-t)}{2} D_i(t) dt.$$
(0.4)

Now

$$\sum_{i=0}^{n-1} D_i(x) = \frac{1}{2\sin^2 \frac{t}{2}} \sum_{i=0}^{n-1} 2\sin(i+\frac{1}{2})t\sin\frac{t}{2} = \frac{1-\cos nt}{2\sin^2 \frac{t}{2}} = \frac{\sin^2 nt}{\sin^2 t},$$

In above we use $2 \sin a \sin b = \cos(a-b) - \cos(a+b)$ and $1 - \cos a = 2 \sin^2 \frac{a}{2}$. So above together with (0.4) will give the result.

5. Let f(x) = 1 if $|x| \le 1$ and f(x) = 0 if $0 < |x| \le \pi$ and $f(x+2\pi) = f(x)$ for all $x \in \mathbb{R}$. ind the Fourier coefficients of f and deduce that $\sum_{1}^{\infty} \frac{\sin n}{n} = \frac{\pi - 1}{2}$.

Solutions: $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi}, \ a_n = \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \frac{\sin n}{n}, \ b_n = \int_{-\pi}^{\pi} f(x) \sin nx dx = 0.$ Now we have

$$f(x) = \frac{a_0}{2} + \sum_n a_n \cos nx + \sum_n b_n \sin nx$$

At x = 0 we have the result

$$1 = \frac{1}{\pi} + \frac{2}{\pi} \sum \frac{\sin n}{n} \Rightarrow \frac{\pi - 1}{2} = \sum_{n} \frac{\sin n}{n}.$$

6. Show that the set of all polynomials of degree at most 3 with coefficients from [1, 1] is compact in C[0, 1]. Does the result hold if coefficients are not assumed to be from [1, 1].

Solution: Let $S = \{f : f(x) = a_0 + a_1x + a_2x^2 + a_3x^3, |x| \le 1 \text{ and } |a_i| \le 1\}$. Then $||f||_{\infty} \le 4$ and $|f'(x)| \le 6$ for all $f \in S$. So we have $|f(x) - f(y)| \le 6|x - y|$ for all $f \in S$. Now by arzella-ascolli we have the result. \Box

7. Prove that $\Omega = \{A \in L(\mathbb{R}^n) : det A \neq 0\}$ is open and $A \to A^{-1}$ is continuous on Ω .

Solution: We realize $A \in L(\mathbb{R}^n)$ as an element of \mathbb{R}^{n^2} then det A is a polynomial therefore continuous. If We can realize $A^{-1} = \frac{adjugate \ of \ A}{det A}$, then we have the result.

8. Let $f \in \mathcal{R}[-\pi,\pi]$ be a 2π periodic function s_n be the nth partial sum of the fourier series. (a) If $s(x) \lim_{t\to 0} \frac{f(x+t)+f(x-t)}{2}$ exist show that $\frac{1}{n} \sum_{i=0}^{n-1} s_i(x) \to s(x)$.

Solutions: $K_n = \frac{1}{n} \sum_{i=0}^{n-1} D_i(x) = \frac{1}{n} \frac{\sin^2 \frac{nt}{2}}{\sin^2 \frac{t}{2}}$ we can see that $K_n \ge 0$, $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n(x) dx = 1$. $K_n(x) \le \frac{2}{n \sin^2 \frac{\delta}{2}}$, $0 < \delta < |x| \le \pi$. We have

$$\frac{1}{n}\sum_{i=0}^{n-1}s_i(x) = \frac{1}{2\pi}\int_{-\pi}^{\pi}f(x-t)K_n(t)dt \quad (see \ 0.1)$$

Now proceed as in Theorem 7.26 of rudin.

(b) If f is differentiable such that $f' \in \mathcal{R}[-\pi,\pi]$ and $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(x)|^2 dx \leq 1$ then $|f(x) - s_n(x)| \leq \frac{2}{\sqrt{n}}$ for all x and $n \geq 1$. solutions: We have

$$f(x) - s_n(x) = \sum_{k=n+1}^{\infty} \left[a_n \cos nx + b_n \sin nx \right]$$

using Integration by parts we have

$$a_n = \frac{b'_n}{n}$$
 and $b_n = \frac{a'_n}{n}$

In above $a'_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \cos nx dx$ and $b'_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) \sin nx dx$. Therefore we have

$$|f(x) - s_n(x)| \le \sum_{k=n+1}^{\infty} \frac{1}{k} [|a'_k| + |b'_k|]$$

$$\le 2 \left(\sum_{k=n+1}^{\infty} \frac{1}{k^2}\right)^{\frac{1}{2}} \left(\sum_{k=n+1}^{\infty} |a'_k|^2 + |b'_k|^2\right)^{\frac{1}{2}}$$

Now we have $\sum_{k=n+1}^{\infty} \frac{1}{k^2} \leq \int_n^{\infty} \frac{1}{x^2} = \frac{1}{n}$ and $\sum_k |a'_k|^2 + |b'_k|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f'(x)|^2 dx$ Then from above we have the result.